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A nonuniform circular grid is defined based on equal azimuthal spacing and parabolic 
radial spacing for increased spatial resolution near the boundary. A conservative 
numerical scheme is devised to integrate the barotropic nondivergent potential vorticity 
equation. Examination of the truncation errors associated with the Jacobian and 
Laplacian approximations and trial integrations using linearized Rossby waves as 
exact solutions both indicate the parabolic scheme predicts linear fields poorly in a 
small annular region near the basin’s center. Improved integrations are obtained with 
a modified numerical scheme. 

1. INTRODUCTION 

A laboratory model has been recently introduced by Pedlosky and Greenspan 
[5] which utilizes the physical analogy between vortex stretching by topography 
and the creation of relative vorticity by the p-effect to model the large-scale ocean 
circulation. The apparatus itself consists of the rapidly rotating cylindrical basin 
with sloping bottom. The applied wind stress is simulated by a viscous stress set 
up by the slow rotation of the flat top relative to the rest of the basin. The model 
response to a steady stress has been thoroughly studied [2], while questions con- 
cerning the model response to transient stresses are currently being explored 
experimentally. 

The laboratory model is cylindrical in shape, so, as an initial step in the develop- 
ment of a complementary numerical model, a numerical scheme must be devised to 
integrate the governing equations in a circular basin. To increase computational 
speed and improve the spatial resolution of viscous boundary layer phenomena 
which we know will occur, especially along the western boundary, the polar grid 
should utilize a nonuniform distribution of grid points in the radial direction with 
a higher density of grid points near the basin’s boundary. This paper discusses one 
particular choice of grid net and associated numerical scheme. The scheme is 
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conservative in the usual sense but the extreme nonuniform distribution of grid 
points causes large errors to appear near the center of the polar grid which do not 
decrease with an increase in spatial resolution. This unusual difficulty may be 
partially removed by modification of the original numerical scheme; so test calcula- 
tions have been made for comparison. The more complex dynamics of the labora- 
tory model may be reasonably approximated by the governing vorticity equation 
for two-dimensional, nondivergent flow of an incompressible viscous fluid on a 
p-plane, this latter balance having been extensively studied in a rectangular basin 
by K. Bryan [3] and others. However, to simplify the comparison, we will consider 
here in detail only the linearized planetary vorticity equation which yields inviscid 
Rossby waves as solutions. 

2. FORMULATION OF NUMERICAL SCHEME 

The simplest grid for a circular domain consists of a uniform spacing between 
grid points in both the azimuthal and radial direction. However, adequate resolu- 
tion near the boundary then causes an undesirable condensation of points near 
the center where, in general, the resolution requirements are less critical. An alter- 
native approach which overcomes the problem of condensation near the center 
utilizes a grid spacing which decreases as r increases. Let 7 be a new radial coor- 
dinate defined by 7 = f(r). The governing equations may then be transformed 
into the (7, Q-coordinate system and provided dv/dr 3 ry, where y > 0, a polar 
grid based on equal increments of q will have improved spatial resolution near 
the boundary. We consider here the specific function q = r2. The grid is then 
defined by the set of I x J points, with coordinates 

7ji = ri2 = iAq, i = 0, l)...) I, 

~9~ = jA9 , j = 0, l,..., J, 

where AT = l/Z and A9 = 2rr/J. This grid offers about twice the radial resolution 
near the boundary as does a linear grid (7 = r) with an equal number of radial 
grid points. Since d7 01 r dr, the area contained between two adjacent rings of grid 
points is constant. Thus, as the meridians diverge from the origin, the radial 
separation between mesh points decreases rapidly. The ratio of the maximum 
radial grid interval (adjacent to the origin) to the minimum is about 2 41. 

As mentioned before, our principal purpose here is to test the accuracy of the 
numerical scheme based on the r2 transformation. While several approaches may 
be taken, we choose to consider the simpler physical system in which no external 
stress is applied on the fluid and internal friction and inertia are negligible (formally 
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letting both Rossby and Ekman numbers go to zero). The flow then satisfies the 
linearized conservation of potential vorticity equation, 

a< 
t = +J(?k Y), 5 = vz*, (1) 

where 5 is vorticity, 4 the streamfunction, and Y = 2y, corresponding to py. The 
transformed Jacobian is 

J(#, d = +wb& - b,+4&>. (2) 

This simple form of the Jacobian (identical to the Cartesian form) allows the 
conservative difference schemes of Arakawa [l] to be used directly. The circular 
boundary is impermeable so 4 = 0 at r = 1. This model was chosen for the test 
integrations so that analytic initial conditions with a known solution could be 
prescribed. Thus all errors are removed except those due to the numerical approxi- 
mations used. 

The finite difference analog to (1) considered here is 

= - & go YixKj-1 - Ki+39 i = 0, 
= - & {Y~+d~~+:li+1 - vGj+d 

- zL(llr~+li-l - Kli-1) 

+ E-lj(Kli+l - $i”-u-31, i > 0, (3) 

where the time derivative is estimated by centered differences (the leap frog method) 
and for i > 0, 9 is Arakawa’s second-order kinetic energy conserving approxima- 
tion (corresponding to JI+X in his notation). At the origin, the Jacobian is computed 
from the net flux of Y (or “planetary vorticity”) into the polygon-shaped area 
defined by the first ring (i = 1) of grid points. This expression coupled with 
Arakawa’s formula does conserve kinetic energy in the sense that the finite dif- 
ference approximation for the area integral of ~(i3~/~t) vanishes. 

The Poisson problem of inverting the Laplacian to determine the streamfunction 
may be solved directly since the Laplacian operator is separable in the (7, 0)- 
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coordinate system. The finite difference Laplacian, 
flux form of V2, has the form 

derived from the integrated 

where 

* A*,=- ij--, t 
4 ( ) 

B,=-?I!- 
4 * 

Both 5 and $ are represented by Fourier series of the form 

J/2 

#ij = ,Co {C,(i) cos k0j + S,(i) sin kej}, 

where J is assumed to be even. 
The unknown coefficients C, and S, satisfy the radial recurrence relationship 

obtained from (4) by the orthogonality property of the Fourier components. Only 
the ax&symmetric component of # contributes to the vorticity at the origin; so the 
appropriate boundary conditions for the unknown coefficients are 

C,(O) - C,(l) = - qo, &(O) = 0, 

C*(O) = S,(O) = 0, k > 0, 

C,(I) = S,(l) = 0, k > 0. 

The resulting inversion problem to find C, , S, is solved by the Gaussian elimination 
method [6] to give an exact solution for 4. 

3. ESTIMATION OF TRUNCATION ERROR 

This numerical scheme utilizing an extremely nonuniform grid displays an 
unusual inaccuracy near the origin. The truncation error associated with the finite 
difference Jacobian at the origin is 
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and off center is 

(The derivation of these expressions is discussed in Appendix A.) For any given 
number of radial grid points Z, the number of azimuthal grid points J may be 
increased to make the truncation error associated with the azimuthal differentiation 
negligible. At the center the truncation error is of first order in dq, or second order 
in physical space. Off center (i > 0), the truncation error is of second order in AT. 
The finite difference equations thus are formally consistent in that the truncation 
error goes to zero at a fixed point in physical space (where the derivatives do not 
vary), as At, 47, and A0 -+ 0.l 

The Taylor series expansion used above to estimate the truncation error fails to 
converge when # varies linearly with r. This peculiarity may be shown by examining 
the first-error term for the case of g and zj behaving as r or dq. Then 

which clearly does not go to zero as Z -+ co. The scheme’s inability to handle 
linear fields can be illustrated best by considering the total truncation error asso- 
ciated with the simple test function # = X. This streamfunction, corresponding to 
a spatially uniform northward flow, crudely approximates the lowest Rossby 
modes near the center of the circle. 

Substitution of $ = x into the finite difference Jacobian (3) yields for the total 
fractional truncation error E, 

E = Jk y> - Jib-3 Y) 
JG, Y> 

1 _ sin AtI 
-7 i = 0, 

= 1 - [T] 2 sin2 tIj - [ .e$’ ] cos 24 {v? (477 - l/i)}, 
i > 0. 

Since A6 is typically < 1, the truncation error at the center is clearly negligible. Off 
center, the truncation error may be approximated by 

E 6 -(gt - 1) cos 28,, 

1 We use here a relaxed definition of consistency in which the numerical solution converges 
towards the true solution as At -+ 0 everywhere except in a small annular ring about the center 
which may be made arbitrarily small by increasing I. 
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where the function gi is defined by 

TABLE I 

Magnitude of Total Fractional Trnncatibn Error E 
Associated with the Trial Streamfonction t,b = x as 

a Function of Radial Position 

i E 

1 41.4 % 
2 3.5 % 
3 1.5 % 
4 .8 % 

The error is periodic in 0 with its azimuthal average being zero. The magnitude of 
the error ) gi - 1 I decreases rapidly with increasing i as shown in Table I. For at 
least this test streamfunction # = x, the finite difference approximations are quite 
accurate at the center and for larger radii. However, the truncation error is quite 
large at the first few radial grid points. This increased error near the origin is 
unusual in the sense that as the number of radial grid points Z is increased, the 
truncation error at a fixed point in physical space decreases but the error at the 
i-th radial position remains constant, independent of the magnitude of I. Thus an 
increase in Z simply shifts the region of greater error closer towards the origin. 

4. MODIFIED NUMERICAL SCHEME 

The inaccuracy displayed by the original numerical scheme can be partially 
removed by modification of the Jacobian in a small annular region near the origin. 
The original scheme is used at the center (i = 0) and outer (i > 5) grid points 
where the truncation errors discussed in the previous section are reasonably small. 
At intermediate grid points (located in the annular region 1 < i S 4, 0 <j < J), 
the governing linear vorticity Eq. (1) is reduced to 

at a* -=22=2 cod+- 
I 

a* sin 0 a* 
at -ae’ r I 

and a numerical analog constructed as before using centered difference approxima- 
tions for the time and azimuthal derivatives. The radial derivative at ri = l/w 
is estimated here by the average value of the derivative computed using centered 
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differences at (rim1 + vi)/2 and (ri + ri+,)/2.2 The modified numerical scheme then 
consists of (3) except in the annular region (1 < i < 4,0 < j < J) where 

with 

b/\/4+1 -dT --z= . 
’ d/i -z/i- 1 

The truncation error associated with this modification is again formally of first 
order in AT and second order in AO. However, the truncation error is now smaller, 
especially for nearly linear fields as demonstrated by the very small error @A&) for 
the sample streamfunction # = X. The modified scheme no longer conserves 
kinetic energy but does predict i%Jat more accurately near the origin. 

5. ANALYTIC TEST FIELDS 

The linearized inviscid physical model was chosen for this study since it has 
well-known Rossby wave solutions (see [4] for complete description). Each mode 
consists of a vertical wave which travels to the west with a phase speed determined 
by the structure of the mode. We chose here to use as our analytic test solution the 
lowest mode with 

8) = J,(k,r) cos(k,r cos ~9 + wt), (5) 

where o = l/k, , k, being the first zero of the J,, Bessel function. This mode 
consists of a simple plane wave with north-south phase lines traveling toward the 
west with phase speed ] C, 1 = l/k12 modulated by a stationary axi-symmetric 
envelope given by J,, . 

6. COMPUTED TRUNCATION ERROR OF ORIGINAL NUMERICAL SCHEME 

To test the error analysis presented in Section 3, the finite-difference Jacobian 
was evaluated using the analytic streamfunction (5) and compared with analytic 
values of a(/at for two different relative phases of the mode. When the flow is 

2 This approximation for a$/& evaluated at r( is equivalent to the usual centered difference 
formula which uses the known value of 1+5 at r i+1 = ri + dri and the interpolated value of I) at 
r = ri - dr, . A second order approximation for the Iirst derivative on a grid with unequal 
spacing does exist [7] but was unfortunately not used here. 
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TABLE II 

Percent Magnitude of Maximum Error in at;/& Prediction 
as Function of Radius r for Phases t = 0 and t = ~12~0” 

t=0 t = Tr/zuJ 

L.R. H.R. L.R. H.R. 

0 0 0 10.6 % 5.5 % 
.158 8.3 7; +50.3 
.224 9.3 % 1.9 +64.6 +5.3 
.275 .9 - $3.0 
.316 2.6 .6 +11.7 +2.6 
.354 - .5 f3.1 
.387 1.5 .4 +16.0 ‘r5.1 

a Values based on calculations made with a low resolution (L.R.) grid (21 radial points) and a 
high resolution (H.R.) grid (41 radial points). 

FIG. I. Truncation error in Jacobian, i.e., (~5/~t),,,~y~~c - J1, at t = 51/2w for low resolution 
case (I = 21). 
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TABLE III 

Percent Error ($,, - v -*&,)/&, in Vorticity Inversion Scheme as Function of Radius, 
Relative Phase of Field, and Spatial Resolution in Radial Direction 

t=O t = r/2w %dI # I= 

r L.R. H.R. L.R. H.R. L.R. H.R. 

.O -1.7% -0.5 % 0 0 1.3 % 0.4 % 

.158 - -.3 - 11.4 - 3.2 

.224 -1.1 -.2 11.9 6.3 4.7 2.5 

.275 - -.2 - 4.4 - 2.0 

.316 -1.0 --.2 6.7 3.5 3.5 1.8 

.354 - -.2 - 2.9 - 1.6 

.387 -1.0 -.2 4.9 2.5 3.0 1.5 

(1 Last two columns list normalized standard deviation. 

approximately circular about the center (corresponding to t = 0 in [5]), a[/& = 0 
at the origin and 9 underestimates the Jacobian everywhere. The error contours 
are cloverleaf in shape with the maximum error occurring at the grid points 
nearest the origin along diagonals oriented at &45” to the x axis. An increase in 
radial resolution does shift the error towards the center as shown in Table II. One 
quarter-wave period later (corresponding to t = 7r/2w in [5]), the flow consists of 
two vertical cells with essentially uniform motion in the --y direction near the 
origin.Prediction of al/at by J is quite poor now with large over-and under-estima- 
tion occurring along the x and y axis near the origin. Figure 1 shows that the dif- 
ference pattern (a~/at),,I,ti, --JI does behave approximately like cos(28) in the 
azimuthal direction as suggested earlier. While the magnitude of the difference 
decreases rapidly with increasing radius, the fractional error listed in Table II shows 
first this decrease and then a slight increase in the region where aiJat = 0. Again 
the error pattern shifts towards the center as dq is decreased. 

The truncation error associated with the v” operator was also studied by com- 
paring the analytic # with the numerical field obtained by inverting the analytic 5 
corresponding to (5). The inversion scheme is quite accurate for t = 0 when the 
flow is roughly circular about the origin. This is to be expected since then both 4 
and 5 vary spatially like r2 near the origin. The truncation error is accordingly 
small for fields which are linear in 17 space. A quarter-wave period later (t = ?r/2w), 
both $ and 5 behave like r or V< near the center causing the inversion scheme to 
seriously underestimate #. The error pattern consists of two cells like # in shape 
with the maximum error concentrated along the x axis near the origin. Table III 
shows that the percentage error at the first few off-center grid points remains 
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relatively constant at t = ~-/2w as the spatial resolution in 7 is increased. The 
average accuracy of the inversion scheme was estimated by computing the standard 
deviation of (&malytic - qh,ericad over one wave period. Also listed in Table III, 
the standard deviation has been normalized by the envelope of #, J,,(klr), and 
reaches a maximum of 4.7 % at the first off-center grid point for the low resolution 
case. 

TABLE IV 

Error in Phase Speed Observed in Four Test Integrations” 

Original Scheme Modified Scheme 

I = 21 2.1 % 2.2 % 
I = 41 1.4 % 1.4 y< 

a For all integrations, the number of azimuthal grid points was constant, .Z = 56, and the time 
step At = 0.005T where T is the period of the lowest Rossby mode. 

FIG. 2. 4 predicted by original scheme at f = ~P/UJ for high resolution case (I = 41). 



K 

FIG. 3. (a) Analytic 5. Vorticity prediction at t = 3~jw for high resolution case (I = 41). 

(b) 5 predicted by original numerical scheme. 
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(c) 5 predicted by modified numerical scheme. 

7. Two AND FOUR PERIOD INTEGRATIONS 

The large truncation error exhibited by both operators practically rules out use 
of the r2 grid for numerical calculations in a circular basin. We will proceed with 
the test integrations to see how the Rossby wave mode is distorted by the scheme 
with time. Both the original and modified numerical schemes were integrated 
from initial 5 and # fields (corresponding to [5] at t = 0 and t = At) for a total 
duration of two periods over a grid with 41 radial grid points and four periods over 
a grid with 21 grid points. The time step (t = 0.1 n/w) was chosen to keep the 
estimated time differencing error less than 0.1% for the worst case. The numerical 
solutions at even and odd time steps were consistent and did not noticeably 
diverge. 

In all cases, the Rossby mode moved to the west with the streamfunction exhibi- 
ting relatively little variation from the analytic field. Figure 2 shows 4 at t = 3?r/w 
for the original scheme. The modified prediction appears identical. Both fields 
show a slight deviation from the analytic field in the bending of streamlines near 
the origin and phase lag. The observed westward phase speed is only slightly 
smaller than the theoretical value with a maximum difference of 2.2 % (see Table IV 
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for phase speed comparison and listing of integration parameters). The original 
scheme does conserve kinetic energy while the modified scheme shows a small 
periodic variation in kinetic energy due primarily to truncation error. 

t 

FIG. 4. 5 predicted by original and modified schemes for high resolution case (I = 41) at 
the first off-center grid point along x axis (i = 1, j = 0). 

t 

FIG. 5. 5 predicted at some off-center point on x axis using original scheme with different 
radial resolution. Point corresponds to i = 1 for low resolution case (Z = 21) and i = 2 for high 
resolution case (Z = 41). 
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The predicted vorticity field at t = 377/w (shown in Fig. 3) clearly indicates 
marked deviation from the analytic field. While the original scheme accurately 
predicts 5 near the circular boundary, the predicted field is quite contorted near 
the origin, principally around the first few rings of grid points. Since some part of 
the apparent distortion very close to the origin may be due to the computer con- 
touring and plotting routine, the fields should be examined at points in physical 
space corresponding to mesh points for different grid resolution cases. The maxi- 
mum deviation in 5 characteristically occurs at the first off-center ring of grid 
points. Figure 4 compares 5 predicted by original and modified schemes (for the 
high resolution case) at the first off-center point along the x axis. Both schemes 
tend to overestimate 5 (the original scheme by -100 % at t = n/w), causing the 
time averaged vorticity to become positive. The next radial point away from the 
center along the x axis partially compensates by acquiring negative average vor- 
ticity. Since this point for the high resolution case coincides in physical space with 
the first off-center point in the low resolution case, the predictions for both cases 
are shown in Fig. 5. Initially at least, the high resolution 5 prediction is better. Note 
that the low resolution prediction at i = 1 is almost identical to 5 at the first grid 
point (i = 1) for the high resolution case (shown in Fig. 4). This again emphasizes 
that accuracy may be improved at a fixed point in space by decreasing dq but 
prediction at the first off-center grid points will remain uniformly poor. 

8. CRITIQUE 

A numerical scheme based on a r2 grid has been devised to integrate the simple 
p-plane vorticity balance. The r2 transformation was chosen for its simplification 
of the Jacobian and concentration of grid points near the boundary. A critical 
discussion of the truncation errors associated with the different numerical opera- 
tors and the results of trial integrations both indicate that the scheme fails. Gross 
errors arise near the origin where, inherently limited by the r2 transformation, the 
scheme cannot accurately handle linear fields. While both Jacobian and Laplacian 
operators give reasonable predictions for parabolic fields, the large error in aQat 
for linear fields causes large over- and under-shoot in 5 during the initial phase of 
the test integrations. The modified numerical scheme yields better results since it 
approximates aiJat more accurately for linear fields. These large deviations occur 
in a physically small region near the center and approximately average to zero; so 
the Rossby waves making up the standing mode pass through the central region 
to emerge relatively undistorted. The predicted streamfunction shows little distor- 
tion anywhere since errors in the vorticity field are inherently smoothed in the 
inversion process. 
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APPENDIX A: CALCULATION OF TRUNCATION ERROR 

The truncation error associated with the Jacobian approximation given in (3) 
may be calculated at the off-center grid points in the usual manner. The values of 
1,4 and g at adjacent grid points are found by Taylor series expansions and substi- 
tuted into Jlij to give the expression presented in Section 3. 

This method must be slightly modified at the origin. The Jacobian when 
integrated over the area A defined by 0 < r < r1 = I&-, 0 < 0 < 277, is equal 
by the divergence theorem to 

where Q = & x Vz,L and r^ is a unit vector directed radially outward. Expansion 
of J about the origin before integration yields for the left side 

The integrand of the contour integral may be further simplsed using the stream- 
function definition before expansion and integration to give for the right side 

Since 

#oj = A+1 - kl 

248 
--~a,heasjAe~+~~~, 

the contour integral becomes 

I c + WtJee - wm 
24 I 

483 + a** . 
i-l i=l.j 

The first sum may be identified as the area rAq times the finite difference expression 
given in (3) for J at the origin. The truncation error estimate given in Section 3 may 
then be obtained by equating both sides of A-l and rearranging terms. 

5W7b7 
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